Abstract

The hydrogenated amorphous carbon (a-C:H) films were prepared on AISI 440C steel substrates using a RF magnetron sputtering graphite target in the CH4 and Ar mixture atmosphere. The friction and wear behavior of a-C:H films were comparatively investigated by pin-on-disc tester under dry sliding and simulated sand-dust wear conditions. In addition, the effects of applied load, amount of sand and sand particle sizes on the tribological performance of a-C:H films were systemically studied. Results show that a-C:H films exhibited ultra-high tribological performance with low friction coefficient and ultra-low wear rate under sand-dust environments. It is very interesting to observe that the friction coefficient of a-C:H film under sand-dust conditions was relatively lower when compared with dry sliding condition, and the wear rate under sand-dust conditions kept at the same order of magnitude (×10−19 m3/N m) with the increase of applied load and particle size as a comparison with the dry sliding condition. Based on the formation of “ridge” layer (composite transfer layer), a transfer layer-hardening composite model was established to explain the anti-wear mechanisms and friction-reducing capacity of a-C:H solid lubrication films under sand-dust conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call