Abstract

AbstractThe strain response of dielectric elastomers sandwiched between compliant electrodes was studied. These electroactive polymer artificial muscle (EPAM) materials show excellent overall performance and appear more attractive than many competing actuator technologies. Based on the available data, the actuation mechanism is due to the free charge interaction of the compliant electrodes, enhanced by the dielectric properties of the elastomer (Maxwell stress). Strains over 200%, actuation pressures up to 8 MPa, and energy densities up to 3.4 J/cm3have been demonstrated with silicone rubber and acrylic elastomers. Response time is rapid, and the potential efficiency is high. The fabrication of EPAM actuators can be simple and low cost. A wide range of small devices have been made, to demonstrate the potential of the technology and reveal more about performance and fabrication issues. These devices include bending beam actuators for scanners and clamps, diaphragm actuators for pumps and valves, stretched-film actuators for electro-optics, and bow actuators for muscle-like actuators for small robots and other micro machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.