Abstract

In photovoltaic (PV) power generation, highly efficient III-V solar cells are promising for emerging mobile applications, such as vehicle-integrated PVs. Although hydride vapor phase epitaxy (HVPE) has received attention due to its lower fabrication costs, realization of high throughput performance while maintaining solar-cell characteristics using this growth method is essential. In this study, the effect of atmospheric-pressure triple-chamber HVPE growth conditions on GaAs solar-cell properties were carefully investigated in conjunction with defect analysis using deep-level transient spectroscopy (DLTS). Based on the analysis on GaAs reaction processes, the suppression of arsine thermal cracking in the HVPE hot-wall reactor was important to achieve fast GaAs growth using a low input V/III ratio. Moreover, the DLTS results revealed that the reduced input V/III ratio was effective in suppressing the generation of EL2 traps, which is a common GaAs midgap complex defect involving arsenic antisites. Although the EL2 trap density increased with the growth rate, the performance of GaAs solar cells that were grown under reduced arsine thermal cracking exhibited almost no considerable cell parameter deterioration at a growth rate of up to 297 μm/h. Consequently, a conversion efficiency of 24% with a high open-circuit voltage of 1.04 V was achieved for the cells that were grown at 200 μm/h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call