Abstract

This paper deals with the analysis of an aluminium beam impacted in a three point bending configuration using a Hopkinson bar device. Full-field deformation measurements were performed using Digital Image Correlation on images captured with an ultra high speed camera (16 frames at a time resolution of 10 μs). The performance of the deformation and strain measurements were evaluated and the data were then used quantitatively to analyse the very complex dynamic behaviour of the beam. It was shown that the deformation of the beam was controlled by the interaction between the striker and the flexural bending wave triggered by the initial impact. The principle of virtual work was used to reconstruct the impact force from the shear strains and to analyze how this impact force relates to the acceleration of the specimen (inertia forces) and the development of the bending stresses. The results are in good agreement with expectations. This opens up new perspectives in the quantitative use of full-field measurements to extract elasto-plastic constitutive parameters from such impact tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.