Abstract

Processing-in-Memory (PIM) based on Resistive Random Access Memory (RRAM) is an emerging acceleration architecture for artificial neural networks. This paper proposes an RRAM PIM accelerator architecture that does not use Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). Additionally, no additional memory usage is required to avoid the need for a large amount of data transportation in convolution computation. Partial quantization is introduced to reduce the accuracy loss. The proposed architecture can substantially reduce the overall power consumption and accelerate computation. The simulation results show that the image recognition rate for the Convolutional Neural Network (CNN) algorithm can reach 284 frames per second at 50 MHz using this architecture. The accuracy of the partial quantization remains almost unchanged compared to the algorithm without quantization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.