Abstract

An ultra-high sensitivity weak magnetic field detecting magnetic fluid surface plasmon resonance (SPR) sensor based on a single-hole fiber (SHF) is proposed for detecting weak magnetic fields. The sensor is constructed with a single-hole fiber in which an exclusive air hole in the cladding is embedded with a metal wire and filled with a magnetic fluid (MF) to enhance the magnetic field sensitivity. The effects of the structural parameters, embedded metals, and refractive index difference between the core and cladding on the magnetic field sensitivity and peak loss are investigated and optimized. The sensitivity, resolution, figure of merit (FOM), and other characteristics of the sensor are analyzed systematically. The numerical results reveal a maximum magnetic field sensitivity of 451,000 pm/mT and FOM of 15.03 mT-1. The ultra-high magnetic field sensitivity renders the sensor capable of detecting weak magnetic fields at the pT level for the first time, in addition to a detection range from 3.5 mT to 17 mT. The SHF-SPR magnetic field sensor featuring high accuracy, simple structure, and ease of filling has immense potential in applications such as mineral resource exploration as well as geological and environmental assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call