Abstract

This study proposed an all-fiber Fabry-Perot interferometer (FPI) strain sensor with two miniature bubble cavities. The device was fabricated by writing two axial, mutually close short-line structures via femtosecond laser pulse illumination to induce a refractive index modified area in the core of a single-mode fiber (SMF). Subsequently, the gap between the two short lines was discharged with a fusion splicer, resulting in the formation of two adjacent bubbles simultaneously in a standard SMF. When measured directly, the strain sensitivity of dual air cavities is 2.4 pm/με, the same as that of a single bubble. The measurement range for a single bubble is 802.14 µε, while the measurement range for a double bubble is 1734.15 µε. Analysis of the envelope shows that the device possesses a strain sensitivity of up to 32.3 pm/με, which is 13.5 times higher than that of a single air cavity. Moreover, with a maximum temperature sensitivity of only 0.91 pm/°C, the temperature cross sensitivity could be neglected. As the device is based on the internal structure inside the optical fiber, its robustness could be guarantee. The device is simple to prepare, highly sensitive, and has wide application prospects in the field of strain measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call