Abstract

BackgroundAmyotrophic lateral sclerosis (ALS) is a disease characterized by a progressive degeneration of motor neurons leading to paralysis. Our previous MRI diffusion tensor imaging studies detected early white matter changes in the spinal cords of mice carrying the G93A-SOD1 mutation. Here, we extend those studies using ultra-high field MRI (17.6 T) and fluorescent microscopy to investigate the appearance of early structural and connectivity changes in the spinal cords of ALS mice.MethodsThe spinal cords from presymptomatic and symptomatic mice (80 to 120 days of age) were scanned (ex-vivo) using diffusion-weighted MRI. The fractional anisotropy (FA), axial (AD) and radial (RD) diffusivities were calculated for axial slices from the thoracic, cervical and lumbar regions of the spinal cords. The diffusion parameters were compared with fluorescence microscopy and membrane cellular markers from the same tissue regions.ResultsAt early stages of the disease (day 80) in the lumbar region, we found, a 19% decrease in FA, a 9% decrease in AD and a 35% increase in RD. Similar changes were observed in cervical and thoracic spinal cord regions. Differences between control and ALS mice groups at the symptomatic stages (day 120) were larger. Quantitative fluorescence microscopy at 80 days, demonstrated a 22% reduction in axonal area and a 22% increase in axonal density. Tractography and quantitative connectome analyses measured by edge weights showed a 52% decrease in the lumbar regions of the spinal cords of this ALS mice group. A significant increase in ADC (23.3%) in the ALS mice group was related to an increase in aquaporin markers.ConclusionsThese findings suggest that the combination of ultra-high field diffusion MRI with fluorescent ALS mice reporters is a useful approach to detect and characterize presymptomatic white matter micro-ultrastructural changes and axonal connectivity anomalies in ALS.

Highlights

  • Amyotrophic lateral sclerosis (ALS) is a disease characterized by a progressive degeneration of motor neurons leading to paralysis

  • magnetic resonance imaging (MRI) diffusion demonstrate presymptomatic spinal cord changes of yellow fluorescent protein (YFP), G93A-SOD1 mice Previous clinical and animal diffusion imaging studies ALS SCs have shown that regional changes in parameters were more affected at the distal than proximal regions [14, 33]

  • At presymptomatic stages (P80), we observed a significant reduction of fractional anisotropy (FA) in the cervical region (p < 0.05) in the YFP, G93A-SOD1 mice (YFP mice =0.60 +/- 0.01 versus YFP, G93A-SOD1 mice = 0.57 +/- 0.01) (- 6.6%) as well as in the thoracic regions (p < 0.01) (YFP mice = 0.66 +/- 0.01 versus YFP, G93A-SOD1 mice = 0.58 +/- 0.01) (- 12.6%) and lumbar region (p < 0.001) (YFP mice = 0.66 +/- 0.01 versus YFP, G93A-SOD1 mice = 0.53 +/- 0.03) (- 19.7%)

Read more

Summary

Introduction

Amyotrophic lateral sclerosis (ALS) is a disease characterized by a progressive degeneration of motor neurons leading to paralysis. Our previous MRI diffusion tensor imaging studies detected early white matter changes in the spinal cords of mice carrying the G93A-SOD1 mutation. We extend those studies using ultra-high field MRI (17.6 T) and fluorescent microscopy to investigate the appearance of early structural and connectivity changes in the spinal cords of ALS mice. One of the most commonly used fluorescent probes in research is the Thy1-YFP mouse model, expressing yellow fluorescent protein (YFP) in a subset of neurons across different brain structures and axon trajectories in specific layers of the cerebral cortex and spinal cord (SC) [11]. The study axonal degeneration with transgenic fluorescent ALS mice has been described in the past [12], such studies were mainly performed at the end stage of the disease with limited focus on changes in the SC white matter (WM) microstructure

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call