Abstract

Ultra-high energy neutrinos are an enigma; among their many poorly understood aspects are their origins and how they interact with nucleons when they reach the Earth. Due to the hard scale ([Formula: see text]) involved in neutrino-nucleon scattering and for a large range of neutrino energies, it is appropriate to describe the target nucleon in terms of its partons — quarks and gluons — and their evolution with [Formula: see text] as governed by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations of perturbative Quantum ChromoDynamics (pQCD). Nevertheless, at the highest neutrino energies, the scattering cross-section is dominated by the contribution of small [Formula: see text] gluons of the target where one expects DGLAP evolution equations to break down due to high gluon density effects (gluon saturation). Here, we give a brief overview of gluon saturation physics in QCD and its effects on ultra-high energy neutrino-nucleon (nucleus) scattering cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.