Abstract

Ultra-high-energy cosmic rays (UHECRs), accelerated hadrons that can exceed energies of 1020 eV, are the highest-energy particles ever observed. While the sources producing UHECRs are still unknown, the Pierre Auger Observatory has detected a large-scale dipole anisotropy in the arrival directions of cosmic rays above 8 EeV. In this work, we explore whether resolved gamma-ray sources can reproduce the Auger dipole. We use various Fermi Large Area Telescope catalogs as sources of cosmic rays in CRPropa simulations. We find that in all cases, the simulated dipole has an amplitude significantly larger than that measured by Auger, even when considering large extragalactic magnetic field strengths and optimistic source weighting schemes. Our result implies that the resolved gamma-ray sources are insufficient to account for the population of sources producing the highest-energy cosmic rays, and there must exist a population of UHECR sources that lack gamma-ray emission or are unresolved by the current-generation gamma-ray telescopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.