Abstract

Nanostructured semiconductors have a clear potential for improved optoelectronic devices, such as high-efficiency light-emitting diodes (LEDs). However, most arrays of semiconductor nanorods suffer from having relatively low densities (or "fill factors") and a high degree of nonuniformity, especially when produced by self-organized growth. Ideally an array of nanorods for an optoelectronic emitter should have a fill factor close to 100%, with uniform rod diameter and height. In this article we present a "space-filling" approach for forming defect-free arrays of AlN nanorods, whereby the separation between each rod can be controlled to 5 nm due to a self-limiting process. These arrays of pyramidal-topped AlN nanorods formed over wafer-scale areas by metal organic chemical vapor deposition provide a defect-free semipolar top surface, for potential optoelectronic device applications with the highest reported fill factor at 98%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call