Abstract
Abstract An ultra high critical heat flux (CHF) was attempted using a highly subcooled liquid jet impinging on a small rectangular heated surface of length 5∼10mm and width 4 mm. Experiments were carried out at jet velocities of 5∼60m/s, a jet temperature of 20°C and system pressures of 0.1∼1.3MPa. The degree of subcooling was varied from 80 to 170 K with increasing system pressure. The general correlation for CHF is shown to be applicable for such a small heated surface under a certain range of conditions. The maximum CHF achieved in these experiments was 211.9 MW/m2, recorded at system pressure of 0.7 MPa, jet velocity of 35 m/s and jet subcooling of 151 K, and corresponds to 48% of the theoretical maximum heat flux proposed by Gambill and Lienhard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.