Abstract
ABSTRACTIn this paper, a novel two-dimensional photonic crystal based all-optical AND/OR logic gates are designed, simulated and optimized. The structure is built on a linear square lattice photonic crystal platform. A multi-wavelength operation, together with a simultaneous operation, is achieved at ultra-high bit rates. The concurrent operation is attained without altering the proposed design continuously, as stated in the literature. It provides simplicity because there is no auxiliary input required along with the absence of externally attached phase shift units. The enhancement process has been done to the rod radius. A magnificent representation tool is developed. The benefit of the mentioned tool lies in the data combination of different operating wavelengths, contrast ratio, and bit rate; which will establish an efficient optimization process. Each gate is enhanced independently, then an overall improvement has been done. As a result, the operation at 1.52 µm will provide a successful multi logic gate operation with ultra-high bit rates of 6.76 and 4.74 Tbit/s for AND and OR logic gates, respectively. The design has an acceptable size of (19.8 × 12.6 µm) and a contrast ratio of 9.74 dB and 17.95 dB for the designed AND and OR gate, respectively. The design is highly sensitive to the waveguide length to verify the gates on demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.