Abstract

A novel homodyne interferometer and analysis method are described which use orthogonal polarization components to measure large rapid changes in interferometric phase, in quadrature, in the presence of strong time-dependent attenuation of the scene beam. This approach overcomes the major sources of error associated with homodyne interferometry (sensitivity nulls, ambiguity in the direction of phase change when passing through a sensitivity null, and intolerance to beam power variations) while maintaining its intrinsic simplicity and speed, enabling extremely high-bandwidth, high-dynamic range measurements limited only by available detector technology. Using this technique, electron density in a magnetized plasma shock was measured with unprecedented bandwidth and resolution, revealing short-timescale features not previously observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.