Abstract

Microfabrication techniques are critical for the rapid prototyping and development of applications for cutting edge materials. Recently diamond has gained considerable interest for quantum photonic, biosensing, inertial confinement fusion and magnetometer applications. In this article, ultra-high aspect ratio milling of diamond micropores by photon, ion and electron based methods is reported. A multiphoton absorption laser ablation approach is revealed to rapidly produce sub-10 μm diameter micropores in diamond with an aspect ratio of 14:1 and a tapered profile at the surface interface. Chemically active, oxygen focused ion beam milling produces high-aspect ratio pores in diamond with an aspect ratio of 65:1 and minimal tapering over the length of the pore, overcoming the physical interaction volume limitations imposed in conventional gallium based focused ion beam milling and laser ablation methods. Oxygen-mediated electron beam induced etching is revealed to negate the limitations imposed by physical sputtering mechanisms utilized in focused ion beam milling via the direct initiation of chemical reactions at the receding surface, producing aspect ratios on the order of 200:1. Numerical simulations reveal the physical basis for the superior aspect-ratio pore milling of the oxygen focused ion beam milling and electron beam induced etching methods. Our results demonstrate direct-write methods for the fabrication of ultra-high aspect micropores in diamond and provide insight into the underlying mechanisms of these physical processes. The three methods demonstrated here can be interchanged for applications based on the desired characteristic aspect ratio and process throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.