Abstract
This paper proposes the ultra−generalized continuous class F (UCCF) mode, which combines the influences of the drain current conduction angle and overdriven transistor on the drain current waveform to achieve a broader finite third-harmonic load impedance space. The UCCF mode uses α to describe the magnitude of the drain current conduction angle and pcr to describe the drain current peak-clipped ratio. An analysis of the effects of pcr and α on the linearity and efficiency of the UCCF model is presented, establishing a robust theoretical foundation for achieving a balance between these two characteristics. Additionally, an examination of how pcr and α influence the load impedance design space is conducted, demonstrating that the UCCF mode not only offers a broader finite third-harmonic load impedance space but also expands the fundamental and second-harmonic load impedance design space. For practical validation, a PA with frequency of 2.05–2.65 GHz is designed based on CGH40010F. The test results show that S11 is less than −15 dB, the drain efficiency is 67.0–73.2%, and the output power is 40.1–41.0 dBm. The linearity is tested using a 5G NR (New Radio) signal with a bandwidth of 100 MHz and a peak-to-average power ratio of 8 dB at 2.35 GHz. The worst adjacent channel power ratio (ACPR) is −34.8 dBc without digital predistortion (DPD), and −57.8 dBc with DPD. An average output power (Pave) of around 32.4 dBm and an average DE (DEave) of 34.39% were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.