Abstract

AbstractThe existence of ultra‐flexible low‐energy forms of boron oxides (B2O3 and BO) is demonstrated, in particular structures in which B3O3 or B4O2 six‐membered rings are linked by single B‐O‐B bridges. The minima in the energy landscapes are remarkably broad; the variation in the internal energies is very small over a very large range of volumes. Such volume changes may even exceed 200%. This remarkable behavior is attributed predominantly to the pronounced angular flexibility of the B‐O‐B bridges linking the rings, which is unusual for a covalent bond. At larger volumes, the structures are nanoporous; the pores collapse upon compression with negligible change in energy, making these suitable as guest‐host materials. In marked contrast, in other materials where low density frameworks have been reported or predicted, such low‐density phases are considerably higher in energy. The flexibility of the structures also offers a resolution of the long‐standing controversy reconciling the structure and density of vitreous B2O3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.