Abstract

Flexible aluminum oxide (Al2O3) fibers were prepared by the blow spinning method and their potential as a high-temperature catalyst support was investigated. The synthesized Al2O3 fibers exhibited remarkable flexibility in both mechanical compression and recovery tests, which remained intact in a wide temperature range from −196 °C to 1200 °C. Moreover, their low thermal conductivity of 0.030 W K−1∙m−1, demonstrated an outstanding thermal insulation. Subsequently, nickel nanoparticles were uniformly distributed on the surface of the Al2O3 fibers as a self-supporting catalyst using a conventional impregnation method. The resulting self-supporting Ni/Al2O3 catalyst demonstrated remarkable thermo-catalytic performance and re-activation capability at high temperatures for thermocatalytic reaction of dry reforming of methane (DRM). Our findings highlight the potential of pure Al2O3 flexible fibers as a versatile material for various industrial applications, including high-temperature catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call