Abstract

We present a numerical investigation of an equiangular spiral photonic crystal fibre (ES-PCF) in soft glass for negative flattened dispersion and ultra-high birefringence. An accurate numerical approach based on finite element method is used for the simulation of the proposed structure. It is demonstrated that it is possible to obtain average negative dispersion of –526.99 ps/nm/km over 1.05–1.70 μm wavelength range with dispersion variation of 3.7 ps/nm/km. The proposed ES-PCF also offers high birefringence of 0.0226 at the excitation wavelength of 1.55 μm. The results here show that the idea of using the proposed fibre can be potential means of effectively directing for residual dispersion compensation, fibre sensor design, long distance data transmission system and so forth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.