Abstract
We review recent advances in the investigation of vertical cavity saturable absorber devices and their use for the all-optical regeneration of telecommunication signals in ultra-long-haul transmission systems. Such devices are polarization-insensitive and operate as fully passive nonlinear optical elements. Two approaches for obtaining fast recovery absorber materials are described, relying upon ion irradiation or upon iron doping. The vertical micro-cavity devices are designed so as to optimize the switching contrast and the operating power. Their functional behaviour as extinction ratio amplifiers has been characterized and their optimal operating conditions have been determined. The potential application of these devices to all-optical regeneration has been investigated through numerical simulations and fully demonstrated in several long-distance transmission loop experiments, with results obtained at 10, 20 and 40 Gbit/s, showing significant improvements in system haul or operational margins. A four-channel fibered module has also been fabricated, as a perspective towards the development of wavelength division multiplexing (WDM) saturable absorber modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.