Abstract

Evolutionary information is crucial for the annotation of proteins in bioinformatics. The amount of retrieved homologs often correlates with the quality of predicted protein annotations related to structure or function. With a growing amount of sequences available, fast and reliable methods for homology detection are essential, as they have a direct impact on predicted protein annotations. We developed a discriminative, alignment-free algorithm for homology detection with quasi-linear complexity, enabling theoretically much faster homology searches. To reach this goal, we convert the protein sequence into numeric biophysical representations. These are shrunk to a fixed length using a novel vector quantization method which uses a Discrete Cosine Transform compression. We then compute, for each compressed representation, similarity scores between proteins with the Dynamic Time Warping algorithm and we feed them into a Random Forest. The WARP performances are comparable with state of the art methods. The method is available at http://ibsquare.be/warp. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.