Abstract

Abstract Herein, for the first time, we demonstrate ultra-fast fabrication of a tape casted NiO-yttria stabilized zirconia (YSZ) anode support for solid oxide fuel cells (SOFCs) using resonant acoustic mixing (RAM) technology. Due to its characteristics of non-contact and high-intensity acoustic field-assisted mixing, NiO-YSZ tape-cast slurry is prepared via a RAM process within ∼0.5 h, > 140 times faster than use of a conventional ball-milling (BM) process (∼72 h). During the RAM process, liquid binders more effectively penetrate into soft agglomerated ceramic powders and covered larger surface area than the case of BM process. The optimization of RAM procedure requires more subdivided mixing sequence and higher content of binders and plasticizers compared to that of the BM. Despite drastically reduced mixing time, the microstructures of RAM Ni-YSZ anode, quantified via a 3D reconstruction, are statistically identical to that of BM Ni-YSZ. The SOFC employing RAM Ni-YSZ anode support achieves 0.55 W/cm2 at 750 °C in peak power density and exhibits high durability for 300 h without noticeable degradation. Thus, our results demonstrate that the RAM process is a highly effective and ultra-fast mixing technology to produce high performance SOFC components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.