Abstract

Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric-field-induced control of charge-carrier concentration to modulate the channel superconducting properties. Despite the fact that the field-effect is believed to be ineffective for superconducting metals, recent experiments showed electric-field-dependent modulation of the critical current ( IC) in a fully metallic transistor. However, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control the IC of the superconducting channel. Our easy fabrication process for DB-FETs show symmetric full suppression of IC for applied critical gate voltages as low as VGC ≃ ±8 V at temperatures reaching about the 85% of the record critical temperature, TC ≃ 550 mK, for titanium. The gate-independent TC and normal-state resistance ( RN) coupled with the increase of resistance in the superconducting state ( RS) for gate voltages close to the critical value ( VGC) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (| gmMAX| ≃ 15 μA/V at VG ≃ ±6.5 V) and variations of Josephson kinetic inductance ( LK) with VG of 2 orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, and tunable interferometers as well as photon detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call