Abstract
Deep-sea floors represent one of the largest and most complex ecosystems on Earth but remain essentially unexplored. The vastness and remoteness of this ecosystem make deep-sea sampling difficult, hampering traditional taxonomic observations and diversity assessment. This problem is particularly true in the case of the deep-sea meiofauna, which largely comprises small-sized, fragile, and difficult-to-identify metazoans and protists. Here, we introduce an ultra-deep sequencing-based metagenetic approach to examine the richness of benthic foraminifera, a principal component of deep-sea meiofauna. We used Illumina sequencing technology to assess foraminiferal richness in 31 unsieved deep-sea sediment samples from five distinct oceanic regions. We sequenced an extremely short fragment (36 bases) of the small subunit ribosomal DNA hypervariable region 37f, which has been shown to accurately distinguish foraminiferal species. In total, we obtained 495,978 unique sequences that were grouped into 1,643 operational taxonomic units, of which about half (841) could be reliably assigned to foraminifera. The vast majority of the operational taxonomic units (nearly 90%) were either assigned to early (ancient) lineages of soft-walled, single-chambered (monothalamous) foraminifera or remained undetermined and yet possibly belong to unknown early lineages. Contrasting with the classical view of multichambered taxa dominating foraminiferal assemblages, our work reflects an unexpected diversity of monothalamous lineages that are as yet unknown using conventional micropaleontological observations. Although we can only speculate about their morphology, the immense richness of deep-sea phylotypes revealed by this study suggests that ultra-deep sequencing can improve understanding of deep-sea benthic diversity considered until now as unknowable based on a traditional taxonomic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.