Abstract

Graphene oxide (GO) was co-modified with copper, tungsten, and titanium oxide. A photocatalytic reactor was used to investigate the performance of the resulting catalysts in the ultra-deep desulfurization of fluid catalytic cracking (FCC) gasoline. The resultant samples were characterized using the X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption–desorption techniques. XRD analysis indicated the coexistence of TiO2, CuO, and WO3 in the catalysts. The desulfurization rate, the refined oil yield, and the increase in the research octane number of FCC gasoline reached 100%, 99.4%, and 1.6 units, respectively, under suitable conditions of a metal content of 10.3%, a metal ratio of 0.7, a reaction temperature of 313 K, a reaction time of 1 h, a catalyst/gasoline ratio of 0.25, and an oxidant percent of 0.5%. The catalyst was active in the desulfurization reaction under ultraviolet irradiation and reused 3 times with no loss in activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.