Abstract

Advancement in the technology of leadless cardiac pacemakers (LCPs) has led to ultracompact designs of implantable antennas. In this study, a small-sized antenna for integration with an LCP, which can be operated in the industrial, scientific, and medical (ISM) band of 2.4 GHz, is developed. The proposed antenna was constructed in a spiral shape to provide superior miniaturization, less sensitivity to body tissue variation, and low specific absorption rate (SAR) values, and avoid fabrication complexities due to its small size. The antenna with a footprint of 3 × 4 × 0.5 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> was constructed on a high dielectric material, namely, Rogers RT/duroid 6010. To the best of the authors' knowledge, this is the smallest footprint with enhanced performance when compared to previous reports related to implantable antennas. In addition, the antenna was integrated with a 3-D printed LCP having dummy electronics and experimentally validated in saline solution and minced pork. The antenna sustained good impedance matching at the ISM band with a measured bandwidth of 21.88% and 15.46% with the device and without the device, respectively. Due to the smooth electric held (surface currents) over the patch, the antenna system had 270.28 and 31.04 W/kg peak SAR for 1 and 10 g of tissues, respectively, with a maximum peak gain of -25.95 dBi. We also discussed the effects of a coaxial cable and the antenna orientation on its performance. From the measured received signal strength, a stable biotelemetric link can be established between the implant and external controlling device up to a distance of 2 m.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call