Abstract

The confluence of high-temperature (~1600–3200K) flameless combustion chambers and vertical-junction (VJ) photovoltaics creates the possibility of ultra-compact high-efficiency thermophotovoltaic (TPV) generators. The actively-cooled cells can be sited at the chamber's aperture without contaminating or damaging them. The flux density, however, is then well above values at which conventional TPV cells can operate efficiently due to the series resistance losses at photo-generated current densities of the order of tens to hundreds of A/cm2. Generally, this problem is resolved by distancing the cells from the radiator, but at the price of dramatically increasing the requisite cell area and system size. VJ cells offer an intrinsically low-current low-series-resistance configuration that obviates the problem. But carrier dynamics then mandate that only indirect-bandgap semiconductors can provide practical solutions. Silicon and Germanium are the candidates analyzed here, with simulated performance rivaling or exceeding current TPV generators. We also evaluate the degree to which efficiency can be increased by introducing a cell back-surface mirror that recirculates sub-bandgap photons back to the combustion region. The unobvious energetic advantage of recirculating photons by (1) increasing combustion chamber temperature at fixed fuel consumption rate, vs. (2) reducing fuel consumption rate at fixed combustion chamber temperature is also evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.