Abstract

In this paper, ultra-compact, broadband tunable optical bandstop filters (OBSFs) based on a multimode one-dimensional photonic crystal waveguide (PhCW) are proposed and systematically investigated. For the wavelengths in the mini-stopband, the input mode is coupled to a contra-propagating higher order mode by the PhCW and then radiates in a taper, resulting in a stopband at the output with low backreflection at the input. Three-dimensional finite-difference time-domain method is employed to study the OBSFs. The influence of main structural parameters is analyzed, and the design is optimized to reduce the back-reflection and band sidelobes. Using localized heating, we can shift the stopband and tune the bandwidth continuously by cascading the proposed structures. Due to the strong grating strength, our device provides a more compact footprint (40 μm × 1 μm) and much broader stopband (bandwidth of up to 84 nm), compared to the counterparts based on microrings, long-period waveguide gratings, and multimode two-dimensional PhCWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.