Abstract

Broadband photodetectors have attracted substantial attention in recent years. The ternary chalcogenide Ta2NiSe5 is a layered material with a direct narrow-band gap (Eg ~ 0.33 eV) which possesses greatly potential to broadband photodetectors. Here, high-quality bulk Ta2NiSe5 was synthesized by Chemical Vapor Transport (CVT) method. We demonstrate a photodetector based on exfoliated Ta2NiSe5 nanoflake, which exhibits a broadband photo-response from 405 nm to 4300 nm. Meanwhile, its main characteristics are superior to other typical 2D materials: high responsivity ~198.1 A W−1 at 1350 nm and ultrafast response time of ~27.4 µs. Long-time photocurrent reproducibility shows that the photodetector has excellent stability under atmosphere. Furthermore, the scanning photocurrent mapping reveals the photoconductive mechanism of Ta2NiSe5 photodetector. In addition, the anisotropic ratio of the photocurrent is ~1.46. The broadband photodetection, high responsivity, anisotropic and environmental stability achieved simultaneously in Ta2NiSe5 photodetector, which are promising for neotype electronics and optoelectronics field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.