Abstract
ABSTRACTWe propose a method to realize ultra-broadband perfect absorption by using multiple slabs of asymmetric hyperbolic metamaterial (AHM) made of doped silicon nanowire arrays. Our numerical results show that the absorptance of the structure is greater than 0.99 in the wavelength range from to for an incident transverse magnetic (TM) plane wave at an angle of incidence equal to . Moreover, the broadband absorptance can still be above 0.9 when the angle of incidence is in the range from to . The underlying mechanism is elucidated as due to the combination of matching of impedance at the interfaces and enhanced absorption in the AHM slabs of the structure. This work may provide in the design of metamaterial absorbers with some inspiring guidelines for obtaining highly enhanced absorption over an ultra-broadband and in a wide range of angle of incidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanoscale and Microscale Thermophysical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.