Abstract

Acoustic metasurfaces can reshape a reflected wavefront rather arbitrarily, despite being much thinner than the wavelength, thus allowing on-demand wavefront modulation in a variety of applications. Recent passive metasurfaces, however, have suffered from bandwidth limitations, thus restricting their range of operation. In this work, we propose the systematic design of ultra-broadband passive metasurfaces by combining the broadband local reflection rule with an optimization method. The validation of the technique is demonstrated by fabrication and measurement of an ultra-broadband carpet cloak. Numerical and experimental results show that the relative bandwidth of the optimized carpet cloak, thinner than one fifth of the maximum wavelength, can exceed 93.33%, a value that is much larger than that of previous passive metasurfaces. Furthermore, multi-frequency pulse incidence tests reveal the excellent time-domain broadband characteristics of the metasurface over a wide range of angles of incidence. The proposed strategy opens a new route for the design of advanced passive metasurfaces for ultra-broadband wave manipulation and thus promotes practical applications of broadband acoustical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.