Abstract

The process of Raman frequency shifting of out-of-phase laser pulses in fibers with a square configuration of weakly coupled cores having two or more zero dispersion wavelengths has been studied. The use of out-of-phase distributions in multicore fibers makes it possible to increase pulse energies by orders of magnitude in comparison with the case of single-core fibers. Conditions for the stability of out-of-phase laser pulses are determined and confirmed by numerical simulations. A configuration of chalcogenide multicore fiber with three zero dispersion wavelengths is proposed, allowing ultra-broadband frequency shifting of laser pulses up to 6.2 μm with an energy efficiency of more than 25%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.