Abstract

Small-scale and flexible acoustic probes are more desirable for exquisite objects like human bodies and complex-shaped components than conventional rigid ones. Herein, a thin-film flexible acoustic sensor (FA-TES) that can detect ultra-broadband acoustic signals in multiple applications is proposed. The device consists of two thin copper-coated polyvinyl chloride films, which are stimulated by acoustic waves and contact each other to generate the triboelectric signal. Interlocking nanocolumn arrays fabricated on the friction surfaces are regarded as a highly adaptive spacer enabling this device to respond to ultra-broadband acoustic signals (100Hz-4MHz) and enhance sensor sensitivity for film weak vibration. Benefiting from the characteristics of high shape adaptability and ultrawide response range, the FA-TES can precisely sense human physiological sounds and voice (≤10kHz) for laryngeal health monitoring and interaction in real-time. Moreover, the FA-TES flexibly arranged on a 3D-printed vertebra model can effectively and accurately diagnose the inner defect by ultrasonic testing (≥1MHz). It envisions that this work can provide new ideas for flexible acoustic sensor designs and optimize real-time acoustic detections of human bodies and complex components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.