Abstract

The research and development of dielectric microwave absorbing materials with broad electromagnetic (EM) response is a significant project in EM wave absorption field. To achieve high-performance absorption and strong interfacial bonding at the same time, thermal-assisted in-situ bonding technology was applied to fabricating the dielectric composite absorbing materials. Thanks to the combination of vacuum filtration and in-situ hydrothermal reaction, the as-prepared binary composite aerogel shows both strong interface contacting and good mechanical stability. In addition, the carbon nanofibers/silica composite aerogel (CSA) exhibits ultra-broad effective bandwidth covering from S to Ku band, originated from the uniform dispersed silica aerogel in conductive carbon fiber network. In details, for CSA1 sample, the maximum reflection loss (RL) values and effective absorption bandwidth reach −46.2 dB (1.8 mm) and 5.2 GHz (1.5 mm). Meanwhile, the optimum RCS reduction values reaches 16.2 dB m2 when the detection theta was set as 0°. For CSA2 sample, the effective absorption bandwidth reaches 8.64 GHz at 1.5 mm, and tends to possess lower frequency EM response covering the S-band. This work exhibits a kind of broad-bandwidth aerogel absorbers at low thickness, which shows huge potential in large-scale production of microwave absorbing devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call