Abstract
The operation of 1-3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate (SG) mode (for either front or back channel), is systematically analyzed. Strong interface coupling and threshold voltage variation, a large influence of substrate depletion underneath the buried oxide, the absence of drain current transients, and degradation in electron mobility are typical effects in these ultra-thin MOSFETs. The comparison of SG and DG configurations demonstrates the superiority of DG-MOSFETs: ideal subthreshold swing and remarkably improved transconductance (consistently higher than twice the value in SG-MOSFETs). The experimental data and the difference between SG and DG modes is explained by combining classical models with quantum calculations. The key effect in ultimately thin DG-MOSFETs is volume inversion, which primarily leads to an improvement in mobility, whereas the total inversion charge is only marginally modified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.