Abstract

Abstract The tensile stress at break (σb) and the associated ultimate strain (εb) of an elastomer depend on (1) the chemical and topological characteristics of the polymeric network, and (2) the test conditions under which rupture is observed. To separate these effects, the ultimate tensile properties can often be characterized by a “failure envelope” defined by values of σb and εb determined at various strain rates over a wide temperature range. Provided time—temperature superposition is applicable, such data superpose on a plot of log σbT0/T versus log εb, where T is the test temperature (absolute) and T0 is an arbitrarily selected reference temperature. The resulting failure envelope is independent of time (strain rate) and temperature and thus it depends only on basic characteristics of the polymeric network. To illustrate the characterization method, data on two styrene-butadiene gum vulcanizates, SBR-I and SBR-II, were analyzed. For SBR-I, values of σb and εb obtained over extensive ranges of strain rate and temperature superposed to give a failure envelope. Data at elevated temperatures also gave a reliable value for the equilibrium modulus. For SBR-II, data obtained at various temperatures under conditions of constant strain and constant strain rate yielded identical failure envelopes; this strongly suggests that the failure envelope is independent of the test method. A theoretical consideration of the time-to-rupture associated with different test methods showed that for given values of σb and εb the time-to-rupture from the following types of tests should increase in the order: constant strain < constant stress < constant strain rate < constant stress rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call