Abstract
The number and size of aluminium non-monohull ships have been steadily increasing over time. This raises growing concerns regarding their structural strength, especially considering the adverse effects of the heat-affected-zone (HAZ) on welding connections in aluminium structures. This paper investigates the ultimate strength of welded aluminium stiffened panels under combined biaxial compressive loads and lateral pressure through the application of numerical simulations. Altogether 360 cases are simulated with varied panel lengths, welding patterns and load combinations. The results are presented and discussed with respect to force end-shortening curves, failure modes and ultimate strength. Influences of the combined loads and HAZ effects are summarized. The numerical results are compared to two commonly used design methods in the marine industry, the International Association of Classification Societies (IACS) rule and the Panel Ultimate Limit States (PULS) approach. Their applicability to welded aluminium stiffened panels is discussed, and modifications are suggested with respect to the transverse loads, lateral pressure, and HAZ effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.