Abstract

Internal ring stiffeners are frequently used to improve the ultimate strength of tubular joints in offshore structures. However, there is a noticeable absence of specific design guidance regarding the assessment of their ultimate strengths in prominent offshore codes and design guides. No equations are available to determine the ultimate strength of internal ring-reinforced KT joints. This work developed equations to determine the ultimate strength and the strength ratio of internal ring-reinforced KT joints based on numerical models and parametric studies comprising ring parameters and joint parameters. Specifically, a finite element model and a response surface approach with eight parameters (λ, δ, ψ, ζ, θ, τ, γ, and β) as inputs and two outputs (ultimate strength and the strength ratio) were evaluated since efficient response surface methodology has been proven to give precise and comprehensive predictions. KT-joint with parameters λ=0.9111, δ=0.2, ψ=0.7030, ζ=0.3, θ=45°, τ=0.90, γ=16.25, and β=0.6 has the maximum ultimate strength, and the KT-joint with parameters: λ=1, δ=0.2, ψ=0.8, ζ=0.5697, θ=45°, τ=0.61, γ=24, and β=0.41 has the maximum strength ratio. The KT-joints with the optimized parameters were validated through finite element analysis. The percentage difference was less than 1.7%, indicating the applicability and high accuracy of the response surface methodology. Doi: 10.28991/CEJ-2024-010-05-012 Full Text: PDF

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.