Abstract

The present paper deals with the free edge effect of composite laminates by using a generalized quasi-three dimensional analysis and experimental verification of an analysis performed for laminates with Teflon inserted on interfaces to simulate initial free-edge delamination. We performed tensile tests for laminates [302/−302/90]s carbon-epoxy laminates with free-edge delamination under uniaxial tension. The experiment reveals that extensional stiffness of the laminate decreases by the initiation of the delamination, and that strength of the laminate without delamination is smaller than that of the laminates with delamination. Generalized quasi-three dimensional finite element technique, which employs energy release rate and maximum stress criteria, is developed to estimate behavior of the laminate after initial delamination. The numerical result by use of this technique predicts the ultimate strength of the laminates with sufficient accuracy according as the comparison with an experimental stress-strain curve. In the experiment conducted both for the laminate with initial delamination and the laminate without initial delamination, an unexpected results were obtained that is the ultimate load of the laminate without initial delamination was lower than that of the laminate with initial delamination. We presented clear explanation on the phenomenon occurred and developed the method to predict the nonlinear behavior of the laminate with or without initial delamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.