Abstract

Flax fibres possess high specific strength and stiffness, and thus are competitive in terms of mechanical properties with the traditional reinforcing fibres used in polymer-matrix composite materials. The mechanical properties of fibres have considerable variability that needs to be characterized and allowed for in the analysis of mechanical response of composites. In this study, the distribution of ultimate strain of elementary flax fibres and its dependence on gauge length is considered. The applicability of the modified Weibull distribution, used for fibre strength, to fibre ultimate strain is evaluated. A simplified relation of ultimate strain and fibre strength distributions is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.