Abstract

Preformed polystyrene-co-butylacrylate (PScoBu) core-shell particles and polystyrene microspheres as well as amine-terminated butadiene nitrile (ATBN) rubber have been used for modification of both rigid and more flexible crosslinked DGEBA-based epoxy networks having significantly different crosslink densities. Some variations in cure kinetics have been shown by both thermal and rheological measurements. Independently of the crosslink density of the neat epoxy matrix, function of the cycloaliphatic or aliphatic hardener used, the toughening effect via core-shell modification has been found as good as that for rubber modification but with a better retention of thermal properties. Results are investigated as a function of the morphologies obtained by scanning electron microscopy (SEM) but also by atomic force microscopy (AFM). Larger fracture toughness was obtained for every-unmodified and modified- epoxy matrices cured with the aliphatic hardener as a consequence of the lower crosslink density of the corresponding mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call