Abstract

풍력발전 타워용 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법으로 극한휨강도 해석을 수행하였다. 쉘의 기하학적 초기변형, 반경 대 두께비, 적용 강종 등이 극한휨강도에 미치는 영향을 분석하였으며, Eurocode 3와 AISI 설계기준에 의한 설계휨강도와 유한요소해석으로 구한 극한휨강도를 비교하였다. 비선형 FE 해석에는 DNV-RP-C202에 제시된 쉘의 좌굴모드와 유로코드에 규정된 진원도 허용오차 및 용접에 의한 변형을 기하학적 초기 결함으로 고려하였다. 원통형 쉘의 반경 대 두께비는 60~210 범위를 고려하였으며 SM520과 HSB800 강재로 제작된 것으로 가정하였다. Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call