Abstract

The concept of concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) is promising for a variety of structural applications and a good alternative for innovative constructions because of numerous attractive features, including durability and concrete confinement. An extensive research work was conducted on circular (CFFT) with and without internal bars for beams and columns. However, much less attention has been given to rectangular CFFT especially those reinforced with internal reinforcement bars. This paper aims at developing a simplified analytical design method to predicate the ultimate moment capacities of previously tested steel-reinforced rectangular CFFT beams at the University of Sherbrooke. A wide range of test parameters was considered such as the FRP tubes thickness, fibre laminates, and steel reinforcement. The proposed design method was found to be acceptable for predicting the ultimate moment capacities of the beams. The accuracy of the theoretical analysis showed good agreement with the measured values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call