Abstract

Variable pitch milling cutters intend to increase performance, but off-the-shelf cutters do not ensure this generally. Depending on the milling process they are selected for, they can perform better or even worse than uniform pitch cutters do. Improved performance can be guaranteed by considering the reflected dynamic behaviour of the machine/tool/workpiece system. This work presents the achievable upper and lower capability bounds by introducing so-called stabilizability diagrams of a hypothetical variable pitch milling cutter that is tuned continuously along the stability boundaries. Robustly tuned milling cutters are designed for selected spindle speed ranges, which are experimentally tested both under laboratory and industrial conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.