Abstract

The present research focuses on the calculation of the bearing capacity of low-density volcanic Pyroclasts. First, the theoretical basis that define an adequate failure criterion for collapsible rocks based on the parameters that characterize them are developed here. Second, a mathematical characteristic lines method is proposed to resolve the ultimate load of shallow foundation rocks with collapsible failure criterion. This method leads to an analytical solution that differentiates two possible rupture mechanisms depending on the rock parameters and external confining load: (a) plastic failure wedge; (b) failure due to destructuring. The analytical solution is also represented in design abacuses to make it easy and quick. Finally, the proposed formulation is validated using numerical models by implementing the collapse criterion as a model defined by the user in a finite difference code. The result is a satisfactory comparison of bearing capacity values and the analytical rupture mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.