Abstract

While inductive transfer learning has revolutionized computer vision, current approaches to natural language processing still need training from the ground up and task-specific adjustments. As a powerful transfer learning approach applicable to any NLP activity, we provide Universal Language Model Fine-tuning (ULMFiT) and outline essential strategies for language model fine-tuning. With an error reduction of 18–24% on most datasets, our technique considerably surpasses the state-of-the-art on six text categorization tasks. Additionally, it achieves the same level of performance as training on 100 times more data with only 100 annotated examples. We have made our pretrained models and code publicly available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.