Abstract

A heterogeneous copper oxide supported on mesoporous manganese oxide (meso Cu/MnOx) was explored for Ullmann-type cross-coupling reactions. An inverse micelle-templated evaporation-induced self-assembly method with in situ addition of copper was adopted to synthesize the mesoporous catalyst. Broad substrate scope and excellent functional group tolerability in C-O, C-N, and C-S bond formation reactions were observed using the optimized reaction conditions. The catalytic protocol was ligand free, and the catalyst was reusable without any significant loss of activity. The kinetic and Hammett analyses provided evidence for oxidative addition to a Cu(I) reaction center followed by nucleophilic addition and reductive elimination at the active copper oxide surface. Rate acceleration was observed for aryl halides with electron-withdrawing groups. The Hammett analysis determined ρ = +1.0, indicative of an oxidative addition, whereas the electronic effect in the phenol ring (ρ = -2.9) was indicative of coordination to a metal ion. Theoretically, the oxidative addition of the aryl halides is assisted by the ligand environment of the copper center. Relevant mechanistic implications are discussed on the basis of the experimental and computational results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call