Abstract

In this paper we derive those properties of topologically embedded curves and surfaces in E3 which can be obtained without use of Bing's Side Approximation Theorem [3] for surfaces. The local homology and homotopy properties studied classically play the largest role in the paper, but the final geometrization of some of the results requires theorems such as the PL Schoenflies Theorem, Dehn's Lemma, the Loop Theorem, the Sphere Theorem, and Waldhausen's generalization of the Loop Theorem (n.b., one application of Waldhausen's theorem (in (3.4)) requires use of the nontrivial normal subgroup in the statement of that theorem).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.