Abstract
Los sistemas de autenticación basados en la dinámica de teclado identifican a las personas analizando sus patrones de tecleo cuando interactúan con dispositivos de entrada, como un teclado de computadora. En los campos de Estadística y Aprendizaje Automático, existen varios estudios de investigación que han aplicado diferentes técnicas para el reconocimiento de patrones de tecleo. En este trabajo, se propuso la creación de un conjunto de datos, así como una metodología que permitiría a los usuarios capturar patrones de tecleo de estudiantes pertenecientes a una universidad en Lima, Perú, a través de un entorno en la nube y desde sus propios dispositivos. La arquitectura en la nube utilizada para la implementación y despliegue de la herramienta web será explicada en detalle. El resultado de este trabajo es un conjunto de datos con información de los participantes, registros de sus patrones de tecleo y metadatos adicionales de los navegadores web de los participantes que podrían usarse para enriquecer futuros estudios. Además, junto con los datos sin procesar capturados, se generaron algunas características de la dinámica de tecleo y se pusieron a disposición junto con el conjunto de datos para facilitar la generación de modelos de clasificación. El conjunto de datos y la metodología presentados en este artículo pueden ser utilizados por otros investigadores para mejorar los sistemas de reconocimiento de dinámica de teclado actuales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.