Abstract
Because of the unique physical and chemical properties of water, obtaining high-quality underwater images directly is not an easy thing. Hence, recovery and enhancement are indispensable steps in underwater image processing and have therefore become research hotspots. Nevertheless, existing image-processing methods generally have high complexity and are difficult to deploy on underwater platforms with limited computing resources. To tackle this issue, this paper proposes a simple and effective baseline named UIR-Net that can recover and enhance underwater images simultaneously. This network uses a channel residual prior to extract the channel of the image to be recovered as a prior, combined with a gradient strategy to reduce parameters and training time to make the operation more lightweight. This method can improve the color performance while maintaining the style and spatial texture of the contents. Through experiments on three datasets (MSRB, MSIRB and UIEBD-Snow), we confirm that UIR-Net can recover clear underwater images from original images with large particle impurities and ocean light spots. Compared to other state-of-the-art methods, UIR-Net can recover underwater images at a similar or higher quality with a significantly lower number of parameters, which is valuable in real-world applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.